Bidirectional particle transport and size selective sorting of Brownian particles in a flashing spatially periodic energy landscape.

نویسندگان

  • Fernando Martinez-Pedrero
  • Helena Massana-Cid
  • Till Ziegler
  • Tom H Johansen
  • Arthur V Straube
  • Pietro Tierno
چکیده

We demonstrate a size sensitive experimental scheme which enables bidirectional transport and fractionation of paramagnetic colloids in a fluid medium. It is shown that two types of magnetic colloidal particles with different sizes can be simultaneously transported in opposite directions, when deposited above a stripe-patterned ferrite garnet film subjected to a square-wave magnetic modulation. Due to their different sizes, the particles are located at distinct elevations above the surface, and they experience two different energy landscapes, generated by the modulated magnetic substrate. By combining theoretical arguments and numerical simulations, we reveal such energy landscapes, which fully explain the bidirectional transport mechanism. The proposed technique does not require pre-imposed channel geometries such as in conventional microfluidics or lab-on-a-chip systems, and permits remote control over the particle motion, speed and trajectory, by using relatively low intense magnetic fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prismatic optical fractionation

Brownian particles drifting through a periodically structured force landscape can become entrained by the landscape’s symmetries. What direction a particular particle takes can depend strongly on subtle variations in its physical properties. Consequently, a homogeneously structured force field can sort a mixture of particles into spatially separated fractions, much as an optical prism refracts ...

متن کامل

Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation.

Brownian particles drifting through a periodically structured force landscape can become entrained by the landscape's symmetries. What direction a particular particle takes can depend strongly on subtle variations in its physical properties. Consequently, a homogeneously structured force field can sort a mixture of particles into spatially separated fractions, much as an optical prism refracts ...

متن کامل

Ratchet Effects in Active Matter Systems

Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems has been realized through the use of active matter, which are self-propelled units that can be biological or non-biol...

متن کامل

Feedback control in a collective flashing ratchet.

An ensemble of Brownian particles in a feedback controlled flashing ratchet is studied. The ratchet potential is switched on and off depending on the position of the particles, with the aim of maximizing the current. We study in detail a protocol which maximizes the instant velocity of the center of mass of the ensemble at any time. This protocol is optimal for one particle and performs better ...

متن کامل

The rich phenomenology of brownian particles in nonlinear potential landscapes

Non-interacting brownian particles follows Langevin equations fullfiling fluctuation–dissipation relation between friction and thermal noise. Under a linear potential (constant force) Einstein found a relation between diffusion and transport through mobility. In nonlinear potentials this prediction is only satisfied within the limit of very large constant external forces. Moreover, other more i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 38  شماره 

صفحات  -

تاریخ انتشار 2016